题目内容
【题目】选修4-4:坐标系与参数方程
在平面直角坐标系中,曲线的参数方程为(,为参数),以坐标原点为极点,以轴正半轴为极轴,建立极坐标系,直线的极坐标方程.
(1)若曲线与只有一个公共点,求的值;
(2)为曲线上的两点,且,求的面积最大值.
【答案】(1)(2)
【解析】试题(1)将曲线的参数方程和直线的极坐标方程化为普通方程,然后利用圆心到直线的距离为半径建立等量关系,求解参数的值;(2)借助极坐标方程中极角的几何意义和三角变换,将的面积公式转化为含有一个角的一个三角函数,利用三角函数的图象探求最值问题.
(Ⅰ)曲线是以为圆心,以为半径的圆;
直线的直角坐标方程为.
由直线与圆只有一个公共点,则可得,
解得: (舍),.
所以:
(Ⅱ)曲线的极坐标方程为,
设的极角为, 的极角为,
则,
所以当时,取得最大值.
的面积最大值.
解法二:因为曲线是以为圆心,以为半径的圆,且
由正弦定理得:,所以.
由余弦定理得,
所以,
所以的面积最大值.
练习册系列答案
相关题目