题目内容
【题目】已知函数与的图象在它们的交点处具有相同的切线.
(1)求的解析式;
(2)若函数有两个极值点,,且,求的取值范围.
【答案】(1);(2)
【解析】
(1)求得两个函数的导数,由公切线的斜率相同可得的方程;将切点代入两个函数,可得的方程;联立两个方程即可求得的值,进而得的解析式;
(2)将的解析式代入并求得,由极值点定义可知,是方程的两个不等实根,由韦达定理表示出,结合可得.代入中化简,分离参数并构造函数,求得并令求得极值点,由极值点两侧符号判断单调性,并求得最小值,代入端点值求得最大值,即可求得的取值范围.
(1)根据题意,函数与
可知,,
两图象在点处有相同的切线,
所以两个函数切线的斜率相等,即,化简得,
将代入两个函数可得,
综合上述两式可解得,
所以.
(2)函数,定义域为,
,
因为,为函数的两个极值点,
所以,是方程的两个不等实根,
由根与系数的关系知,,
又已知,所以,
,
将式代入得
,
令,,
,令,解得,
当时,,在单调递减;
当时,,在单调递增;
所以,
,
,
即的取值范围是.
【题目】“微信运动”已成为当下热门的运动方式,小王的微信朋友圈内也有大量好友参与了“微信运动”,他随机选取了其中的40人(男、女各20人),记录了他们某一天的走路步数,并将数据整理如下:
步数 性别 | 0-2000 | 2001-5000 | 5001-8000 | 8001-10000 | >10000 |
男 | 1 | 2 | 3 | 6 | 8 |
女 | 0 | 2 | 10 | 6 | 2 |
0.10 | 0.05 | 0.025 | 0.010 | |
2.706 | 3.841 | 5.024 | 6.635 |
附:
(1)已知某人一天的走路步数超过8000步被系统评定为“积极型”,否则为“懈怠型”,根据题意完成下面的列联表,并据此判断能否有95%以上的把握认为“评定类型”与“性别”有关?
积极型 | 懈怠型 | 总计 | |
男 | |||
女 | |||
总计 |
(2)若小王以这40位好友该日走路步数的频率分布来估计其所有微信好友每日走路步数的概率分布,现从小王的所有微信好友中任选2人,其中每日走路不超过5000步的有人,超过10000步的有人,设,求的分布列及数学期望.