题目内容
【题目】2019年是新中国成立七十周年,新中国成立以来,我国文化事业得到了充分发展,尤其是党的十八大以来,文化事业发展更加迅速,下图是从2013 年到 2018 年六年间我国公共图书馆业机构数(个)与对应年份编号的散点图(为便于计算,将 2013 年编号为 1,2014 年编号为 2,…,2018年编号为 6,把每年的公共图书馆业机构个数作为因变量,把年份编号从 1 到 6 作为自变量进行回归分析),得到回归直线,其相关指数,给出下列结论,其中正确的个数是( )
①公共图书馆业机构数与年份的正相关性较强
②公共图书馆业机构数平均每年增加13.743个
③可预测 2019 年公共图书馆业机构数约为3192个
A.0B.1C.2D.3
【答案】D
【解析】
根据和确定是正相关还是负相关以及相关性的强弱;根据的值判断平均每年增加量;根据回归直线方程预测年公共图书馆业机构数.
由图知点散布在从左下角到右上角的区域内,所以为正相关,
又趋近于1,所以相关性较强,故①正确;由回归方程知②正确;
由回归方程,当时,得估计值为3191.9≈3192,故③正确.
故选:D.
【题目】某省即将实行新高考,不再实行文理分科.某校研究数学成绩优秀是否对选择物理有影响,对该校2018级的500名学生进行调在收集到相关数据如下:
选物理 | 不选物理 | 总计 | |
数学成绩优秀 | |||
数学成绩不优秀 | 130 | ||
总计 | 300 | 500 |
(1)根据以上提供的信息,完成列联表,并完善等高条形图;
(2)能否在犯错误的概率不超过0.05的前提下认为数学成绩优秀与选物理有关?
附:.
临界值表:
P() | 0.10 | 0.05 | 0.010 | 0.005 | 0.001 |
k | 2.706 | 3.841 | 6.635 | 7.879> | 10.828 |
【题目】假设关于某设备的使用年限x(年)和所支出的维修费用y万元有如下的统计资料:
x | 2 | 3 | 4 | 5 | 6 |
y | 2.2 | 3.8 | 5.5 | 6.5 | 7.0 |
(1)画出散点图并判断是否线性相关;
(2)如果线性相关,求线性回归方程;
(3)估计使用年限为10年时,维修费用是多少?
附注:①参考公式:回归方程中斜率和截距的最小二乘估计分别为;
②参考数据:
【题目】某网购平台为了解某市居民在该平台的消费情况,从该市使用其平台且每周平均消费额超过100元的人员中随机抽取了100名,并绘制如图所示频率分布直方图,已知中间三组的人数可构成等差数列.
(1)求的值;
(2)分析人员对100名调查对象的性别进行统计发现,消费金额不低于300元的男性有20人,低于300元的男性有25人,根据统计数据完成下列列联表,并判断是否有的把握认为消费金额与性别有关?
(3)分析人员对抽取对象每周的消费金额与年龄进一步分析,发现他们线性相关,得到回归方程.已知100名使用者的平均年龄为38岁,试判断一名年龄为25岁的年轻人每周的平均消费金额为多少.(同一组数据用该区间的中点值代替)
列联表
男性 | 女性 | 合计 | |
消费金额 | |||
消费金额 | |||
合计 |
临界值表:
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
,其中