题目内容
19.已知$α,β∈(0,\frac{π}{2}),sin(α+β)=\frac{{5\sqrt{3}}}{14},sinα=\frac{{4\sqrt{3}}}{7}$,则sinβ=$\frac{\sqrt{3}}{2}$.分析 由条件求得cosα=$\frac{1}{7}$,α+β为钝角,cos(α+β)=-$\frac{11}{14}$.再根据sinβ=sin[(α+β)-α]利用两角差的正弦公式计算求得结果.
解答 解:∵已知$α,β∈(0,\frac{π}{2}),sin(α+β)=\frac{{5\sqrt{3}}}{14},sinα=\frac{{4\sqrt{3}}}{7}$>$\frac{\sqrt{3}}{2}$,
∴α∈($\frac{π}{3}$,$\frac{π}{2}$),∴cosα=$\frac{1}{7}$.
再根据sin(α+β)<sinα,故α+β为钝角,故cos(α+β)=-$\sqrt{{1-sin}^{2}(α+β)}$=-$\frac{11}{14}$.
∴sinβ=sin[(α+β)-α]=sin(α+β)cosα-cos(α+β)sinα=$\frac{5\sqrt{3}}{14}×\frac{1}{7}$-(-$\frac{11}{14}$)×$\frac{4\sqrt{3}}{7}$=$\frac{\sqrt{3}}{2}$,
故答案为:$\frac{{\sqrt{3}}}{2}$.
点评 本题主要考查同角三角函数的基本关系,两角和差的三角公式的应用,属于基础题.
练习册系列答案
相关题目
9.深圳某商场为使销售空调和冰箱获得的总利润达到最大,对即将出售的空调和冰箱相关数据进行调查,得出下表:
问:该商场怎样确定空调或冰箱的月供应量,才能使总利润最大?最大利润是多少?
资金 | 每台空调或冰箱所需资金(百元) | 月资金供应数量 (百元) | |
空调 | 冰箱 | ||
成本 | 30 | 20 | 300 |
工人工资 | 5 | 10 | 110 |
每台利润 | 6 | 8 |
14.集合N={x||x|≤1,x∈R},M={x|x≤0,x∈R},则M∩N=( )
A. | {x|-1≤x≤0} | B. | {x|x≤0} | C. | {x|0≤x≤1} | D. | {x|x≤1} |
4.a=${∫}_{0}^{2}$xdx,b=${∫}_{0}^{2}$exdx,c=${∫}_{0}^{2}$sinxdx,则a、b、c大小关系是( )
A. | a<c<b | B. | a<b<c | C. | c<b<a | D. | c<a<b |
11.等比数列{an}的各项均为正数,且a5a6+a4a7=18,则log3a1+log3a2+…+log3a10=( )
A. | 5 | B. | 9 | C. | log345 | D. | 10 |