题目内容
11.等比数列{an}的各项均为正数,且a5a6+a4a7=18,则log3a1+log3a2+…+log3a10=( )A. | 5 | B. | 9 | C. | log345 | D. | 10 |
分析 利用等比中项、对数性质可知log3a1+log3a2+…+log3a10=5log3a4a7,进而计算可得结论.
解答 解:依题意当n≤10时,a11-nan=a1•q11-n-1•a1•qn-1=${{a}_{1}}^{2}$•q9为定值,
又∵a5a6+a4a7=18,
∴a4a7=9,
∴log3a1+log3a2+…+log3a10
=log3a1a10+log3a2a9+log3a3a8+log3a4a7+log3a5a6
=5log3a4a7
=5log39
=10,
故选:D.
点评 本题考查等比数列的等比中项及对数的运算法则,注意解题方法的积累,属于中档题.
练习册系列答案
相关题目
2.已知实数x,y满足$\left\{\begin{array}{l}x+y≥2\\ x-y≤2\\ 0≤y≤3\end{array}\right.$,则z=3x-y的取值范围是( )
A. | [-3,6] | B. | [-3,12] | C. | [-6,12] | D. | [3,6] |
16.计算定积分${∫}_{0}^{2}$($\sqrt{2x-{x}^{2}}$+x)dx( )
A. | $\frac{π}{2}$+4 | B. | π+2 | C. | $\frac{π}{2}$+2 | D. | π+4 |
20.设x,y满足约束条件$\left\{\begin{array}{l}{x+2y-2≥0}\\{x-y+1≥0}\\{2x-y-2≥0}\end{array}\right.$,则z=3x-y的取值范围是( )
A. | [-1,$\frac{16}{5}$] | B. | [-1,5] | C. | [$\frac{16}{5}$,+∞) | D. | [5,+∞) |