题目内容
【题目】设定义在(0,+∞)的单调函数f(x),对任意的x∈(0,+∞)都有f[f(x)﹣log2x]=6.若x0是方程f(x)﹣f′(x)=4的一个解,且 ,则a=( )
A.4
B.3
C.2
D.1
【答案】D
【解析】根据题意,对任意的x∈(0,+∞),都有f[f(x)﹣log2x]=6,
又由f(x)是定义在(0,+∞)上的单调函数,
则f(x)﹣log2x为定值,
设t=f(x)﹣log2x,则f(x)=t+log2x
又由f(t)=6,可得t+log2t=6,
可解得t=4,故f(x)=4+log2x,f′(x)= ,
又x0是方程f(x)﹣f′(x)=4的一个解,
所以x0是函数F(x)=f(x)﹣f′(x)﹣4=log2x﹣ 的零点,
分析易得F(1)=﹣ <0,F(2)=1﹣ =1﹣ >0,
故函数F(x)的零点介于(1,2)之间,故a=1,
所以答案是:1
【考点精析】掌握函数的零点与方程根的关系是解答本题的根本,需要知道二次函数的零点:(1)△>0,方程 有两不等实根,二次函数的图象与 轴有两个交点,二次函数有两个零点;(2)△=0,方程 有两相等实根(二重根),二次函数的图象与 轴有一个交点,二次函数有一个二重零点或二阶零点;(3)△<0,方程 无实根,二次函数的图象与 轴无交点,二次函数无零点.
练习册系列答案
相关题目