题目内容
【题目】在平面直角坐标系中,点是直线上的动点,为定点,点为的中点,动点满足,且,设点的轨迹为曲线.
(1)求曲线的方程;
(2)过点的直线交曲线于,两点,为曲线上异于,的任意一点,直线,分别交直线于,两点.问是否为定值?若是,求的值;若不是,请说明理由.
【答案】(1);(2)是定值,.
【解析】
(1)设出M的坐标为,采用直接法求曲线的方程;
(2)设AB的方程为,,,,求出AT方程,联立直线方程得D点的坐标,同理可得E点的坐标,最后利用向量数量积算即可.
(1)设动点M的坐标为,由知∥,又在直线上,
所以P点坐标为,又,点为的中点,所以,,,
由得,即;
(2)
设直线AB的方程为,代入得,设,,
则,,设,则,
所以AT的直线方程为即,令,则
,所以D点的坐标为,同理E点的坐标为,于是,
,所以
,从而,
所以是定值.
练习册系列答案
相关题目
【题目】某大型运动会的组委会为了搞好接待工作,招募了30名男志愿者和20名女志愿者.调查发现,这些志愿者中有部分志愿者喜爱运动,另一部分志愿者不喜欢运动,并得到了如下等高条形图和列联表:
喜爱运动 | 不喜爱运动 | 总计 | |
男生 | 30 | ||
女生 | 20 | ||
总计 | 50 |
(1)求出列联表中的值;
(2)是否有的把握认为喜爱运动与性别有关?附:参考公式和数据:,(其中)
0.500 | 0.100 | 0.050 | 0.010 | 0.001 | |
0.455 | 2.706 | 3.841 | 6.635 | 10.828 |