题目内容

已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)经过点A(1,
2
2
),且离心率为
2
2
,过点B(2,0)的直线l与椭圆交于不同的两点M、N.
(Ⅰ)求椭圆的方程;
(Ⅱ)求
.
BM
.
BN
的取值范围.
(Ⅰ)由椭圆
x2
a2
+
y2
b2
=1(a>b>0)经过点A(1,
2
2
),且离心率为
2
2

可得
e=
c
a
=
2
2
1
a2
+
1
2b2
=1
a2=b2+c2
,解得
a2=2
b=c=1

∴椭圆的方程为
x2
2
+y2=1

(Ⅱ)由题意可知直线l的斜率存在,设其方程为y=k(x-2).
设M(x1,y1),N(x2,y2).由
y=k(x-2)
x2
2
+y2=1
得(1+2k2)x2-8k2x+8k2-2=0.
△=64k4-4(1+2k2)(8k2-2)>0,得0≤k2
1
2

x1+x2=
8k2
1+2k2
x1x2=
8k2-2
1+2k2

BM
=(x1-2,y1)
BN
=(x2-2,y2)

BM
BN
=(x1-2)(x2-2)+y1y2=(1+k2)(x1-2)(x2-2)=(1+k2)[x1x2-2(x1+x2)+4]=(1+k2)
2
1+2k2
=1+
1
1+2k2

0≤k2
1
2
,∴
3
2
<1+
1
2k2
≤2

.
BM
.
BN
的取值范围是(
3
2
,2]
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网