ÌâÄ¿ÄÚÈÝ
Èçͼ£¬ÔÚƽÃæÖ±½Ç×ø±êϵxOyÖУ¬ÍÖÔ²E£º
+
=1(a£¾b£¾0)µÄ½¹¾àΪ2£¬ÇÒ¹ýµã(
£¬
)£®
£¨1£©ÇóÍÖÔ²EµÄ·½³Ì£»
£¨2£©ÈôµãA£¬B·Ö±ðÊÇÍÖÔ²EµÄ×ó¡¢ÓÒ¶¥µã£¬Ö±Ïßl¾¹ýµãBÇÒ´¹Ö±ÓÚxÖᣬµãPÊÇÍÖÔ²ÉÏÒìÓÚA£¬BµÄÈÎÒâÒ»µã£¬Ö±ÏßAP½»lÓÚµãM£®
£¨¢¡£©ÉèÖ±ÏßOMµÄбÂÊΪk1£¬Ö±ÏßBPµÄбÂÊΪk2£¬ÇóÖ¤£ºk1k2Ϊ¶¨Öµ£»
£¨¢¢£©Éè¹ýµãM´¹Ö±ÓÚPBµÄÖ±ÏßΪm£®ÇóÖ¤£ºÖ±Ïßm¹ý¶¨µã£¬²¢Çó³ö¶¨µãµÄ×ø±ê£®
x2 |
a2 |
y2 |
b2 |
2 |
| ||
2 |
£¨1£©ÇóÍÖÔ²EµÄ·½³Ì£»
£¨2£©ÈôµãA£¬B·Ö±ðÊÇÍÖÔ²EµÄ×ó¡¢ÓÒ¶¥µã£¬Ö±Ïßl¾¹ýµãBÇÒ´¹Ö±ÓÚxÖᣬµãPÊÇÍÖÔ²ÉÏÒìÓÚA£¬BµÄÈÎÒâÒ»µã£¬Ö±ÏßAP½»lÓÚµãM£®
£¨¢¡£©ÉèÖ±ÏßOMµÄбÂÊΪk1£¬Ö±ÏßBPµÄбÂÊΪk2£¬ÇóÖ¤£ºk1k2Ϊ¶¨Öµ£»
£¨¢¢£©Éè¹ýµãM´¹Ö±ÓÚPBµÄÖ±ÏßΪm£®ÇóÖ¤£ºÖ±Ïßm¹ý¶¨µã£¬²¢Çó³ö¶¨µãµÄ×ø±ê£®
£¨1£©ÓÉÌâÒâµÃ2c=2£¬¡àc=1£¬ÓÖ
+
=1£¬a2=b2+1£®
ÏûÈ¥a¿ÉµÃ£¬2b4-5b2-3=0£¬½âµÃb2=3»òb2=-
£¨ÉáÈ¥£©£¬Ôòa2=4£¬
¡àÍÖÔ²EµÄ·½³ÌΪ
+
=1£®
£¨2£©£¨¢¡£©ÉèP£¨x1£¬y1£©£¨y1¡Ù0£©£¬M£¨2£¬y0£©£¬Ôòk1=
£¬k2=
£¬
¡ßA£¬P£¬MÈýµã¹²Ïߣ¬¡ày0=
£¬¡àk1k2=
=
£¬
¡ßP£¨x1£¬y1£©ÔÚÍÖÔ²ÉÏ£¬¡à
=
(4-
)£¬¹Êk1k2=
=-
Ϊ¶¨Öµ£®
£¨¢¢£©Ö±ÏßBPµÄбÂÊΪk2=
£¬Ö±ÏßmµÄбÂÊΪkm=
£¬
ÔòÖ±ÏßmµÄ·½³ÌΪy-y0=
(x-2)£¬y=
(x-2)+y0=
x-
+
=
x+
=
x+
=
x+
=
(x+1)£¬
¼´y=
(x+1)£®
ËùÒÔÖ±Ïßm¹ý¶¨µã£¨-1£¬0£©£®
2 |
a2 |
3 |
2b2 |
ÏûÈ¥a¿ÉµÃ£¬2b4-5b2-3=0£¬½âµÃb2=3»òb2=-
1 |
2 |
¡àÍÖÔ²EµÄ·½³ÌΪ
x2 |
4 |
y2 |
3 |
£¨2£©£¨¢¡£©ÉèP£¨x1£¬y1£©£¨y1¡Ù0£©£¬M£¨2£¬y0£©£¬Ôòk1=
y0 |
2 |
y1 |
x1-2 |
¡ßA£¬P£¬MÈýµã¹²Ïߣ¬¡ày0=
4y1 |
x1+2 |
y0y1 |
2(x1-2) |
4y12 | ||
2(
|
¡ßP£¨x1£¬y1£©ÔÚÍÖÔ²ÉÏ£¬¡à
y | 21 |
3 |
4 |
x | 21 |
4y12 | ||
2(
|
3 |
2 |
£¨¢¢£©Ö±ÏßBPµÄбÂÊΪk2=
y1 |
x1-2 |
2-x1 |
y1 |
ÔòÖ±ÏßmµÄ·½³ÌΪy-y0=
2-x1 |
y1 |
2-x1 |
y1 |
2-x1 |
y1 |
2(2-x1) |
y1 |
4y1 |
x1+2 |
2-x1 |
y1 |
2(x12-4)+4
| ||
(x1+2)y1 |
2-x1 |
y1 |
2(x12-4)+12-3
| ||
(x1+2)y1 |
2-x1 |
y1 |
2-x1 |
y1 |
2-x1 |
y1 |
¼´y=
2-x1 |
y1 |
ËùÒÔÖ±Ïßm¹ý¶¨µã£¨-1£¬0£©£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿