题目内容
【题目】已知函数.
(1)若,求函数的最小值;
(2)当时,若对,,使得成立,求的范围.
【答案】(1)当时的最小值为,当时的最小值为,当时,最小值为.(2)
【解析】试题分析:(1)本问考查利用导数求函数的最值,对函数求导数,,令得,对分类讨论,当,,时,分别讨论函数在区间上的单调性,从而求出函数的最小值;(2)本问主要考查“任意”、“存在”问题的等价转化,对,,使得成立”等价于“在上的最小值不大于在上的最小值”.即由(1)问易得到函数的最小值,然后通过对的讨论求即可.
试题解析:(I),令得.
当即时,在上,递增,的最小值为
.
当即时,在上,为减函数,在上,为增函数. ∴的最小值为.
当即时,在上,递减,的最小值为
.
综上所述,当时的最小值为,当时的最小值为,当时,最小值为.
(II)令
由题可知“对,,使得成立”
等价于“在上的最小值不大于在上的最小值”.
即
由(I)可知,当时,.
当时,,
①当时,
由得,与矛盾,舍去.
②当时,
由得,与矛盾,舍去.
③当时,
由得
综上,的取值范围是.
练习册系列答案
相关题目
【题目】对某校高一年级学生参加社区服务次数进行统计,随机抽取名学生作为样本,得到这名学生参加社区服务的次数.根据此数据作出了频数与频率的统计表和频率分布直方图如下:
分组 | 频数 | 频率 |
10 | 0.25 | |
25 | ||
2 | 0.05 | |
合计 | 1 |
(1)求出表中及图中的值;
(2)试估计他们参加社区服务的平均次数;
(3)在所取样本中,从参加社区服务的次数不少于20次的学生中任选2人,求至少1人参加社区服务次数在区间内的概率.