题目内容
【题目】以直角坐标系的原点为极点, 轴正半轴为极轴,并在两种坐标系中取相同的长度单位,已知直线的参数方程为,( 为参数, ),曲线的极坐标方程为.
(1)求曲线的直角坐标方程;
(2)设直线与曲线相交于, 两点,当变化时,求的最小值.
【答案】(1)(2)2
【解析】试题分析:(1)本问考查极坐标与直角坐标互化公式,根据可得,所以曲线C的直角坐标方程为 ;(2)本问考查直线参数方程标准形式下的几何意义,即将直线参数方程的标准形式,代入到曲线C的直角坐标方程,得到关于t的一元二次方程,设两点对应的参数分别为,列出, , ,于是可以求出的最小值.
试题解析:(I)由由,得
曲线 的直角坐标方程为
(II)将直线的参数方程代入,得
设两点对应的参数分别为则, ,
当时, 的最小值为2.
练习册系列答案
相关题目
【题目】某网店尝试用单价随天数而变化的销售模式销售一种商品,利用30天的时间销售一种成本为10元/件的商品售后,经过统计得到此商品单价在第x天(x为正整数)销售的相关信息,如表所示:
销售量n(件) | n=50﹣x |
销售单价m(元/件) | 当1≤x≤20时,m=20+ x |
当21≤x≤30时,m=10+ |
(1)请计算第几天该商品单价为25元/件?
(2)求网店销售该商品30天里所获利润y(元)关于x(天)的函数关系式;
(3)这30天中第几天获得的利润最大?最大利润是多少?