题目内容

【题目】如图,AB为⊙O的直径,F为弦AC的中点,连接OF并延长交 于点D,过点D作⊙O的切线,交BA的延长线于点E.

(1)求证:AC∥DE;
(2)连接CD,若OA=AE=a,写出求四边形ACDE面积的思路.

【答案】
(1)

证明:∵ED与⊙O相切于D,

∴OD⊥DE,

∵F为弦AC中点,

∴OD⊥AC,

∴AC∥DE.


(2)

解:作DM⊥OA于M,连接CD,CO,AD.

首先证明四边形ACDE是平行四边形,根据S平行四边形ACDE=AEDM,只要求出DM即可.

∵AC∥DE,AE=AO,

∴OF=DF,

∵AF⊥DO,

∴AD=AO,

∴AD=AO=OD,

∴△ADO是等边三角形,同理△CDO也是等边三角形,

∴∠CDO=∠DOA=60°,AE=CD=AD=AO=DD=a,

∴AO∥CD,又AE=CD,

∴四边形ACDE是平行四边形,易知DM= a,

∴平行四边形ACDE面积= a2


【解析】本题考查切线的性质、平行四边形的性质、垂径定理等知识,解题的关键是学会添加常用辅助线,利用特殊三角形解决问题,属于中考常考题型.(1)欲证明AC∥DE,只要证明AC⊥OD,ED⊥OD即可.(2)作DM⊥OA于M,连接CD,CO,AD,首先证明四边形ACDE是平行四边形,根据S平行四边形ACDE=AEDM,只要求出DM即可.
【考点精析】根据题目的已知条件,利用平行四边形的性质和垂径定理的推论的相关知识可以得到问题的答案,需要掌握平行四边形的对边相等且平行;平行四边形的对角相等,邻角互补;平行四边形的对角线互相平分;推论1:A、平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧B、弦的垂直平分线经过圆心,并且平分弦所对的两条弧C、平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧;推论2 :圆的两条平行弦所夹的弧相等.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网