题目内容
16.已知函数f(x)=ex(lnx+k),(k为常数,e=2.71828…是自然对数的底数).函数y=f(x)的导函数为f′(x),且f′(1)=0.(1)求k的值;
(2)设g(x)=f′(x)-2[f(x)+ex],φ(x)=$\frac{e^x}{x}$,g(x)≤t•φ(x)恒成立.求实数t的取值范围.
分析 (1)求导数,利用f′(1)=0,即可求k的值;
(2)由g(x)≤tφ(x)得${e^x}({\frac{1}{x}-1-lnx})≤t•\frac{e^x}{x}$,分离参数,求最值,即可求实数t的取值范围.
解答 解:(1)$f'(x)={e^x}({lnx+k})+{e^x}•\frac{1}{x}$,
∴f'(1)=ek+e=0,∴k=-1…(4分)
(2)$g(x)={e^x}•({\frac{1}{x}-1-lnx})$,由g(x)≤tφ(x)得${e^x}({\frac{1}{x}-1-lnx})≤t•\frac{e^x}{x}$
即$\frac{1}{x}-1-lnx≤\frac{t}{x}({x>0})$,∴t≥1-x-xlnx(x>0)
令h(x)=1-x-xlnx,(x>0),则h'(x)=-(lnx+2)=0,x=e-2,
∴h(x)在(0,e-2)↗,(e-2,+∞)↘,
∴$h{(x)_{max}}=h({{e^{-2}}})=1+\frac{1}{e^2}$,
∴$t≥1+\frac{1}{e^2}$…(12分)
点评 本题考查导数知识的运用,考查函数的单调性,考查学生的计算能力,属于中档题.
练习册系列答案
相关题目
11.已知三棱锥P-ABC的外接球的球心O在AB上,且PO⊥平面ABC,2AC=$\sqrt{3}$AB,若三棱锥P-ABC的体积为$\frac{3}{2}$,则该三棱锥的外接球的体积为( )
A. | 8$\sqrt{3}$π | B. | 6$\sqrt{3}$π | C. | 4$\sqrt{3}$π | D. | 2$\sqrt{3}$π |
1.两条不重合的直线a,b和平面α,则“a⊥α,b⊥α”是“a∥b”的( )
A. | 必要不充分条件 | B. | 充分不必要条件 | ||
C. | 充要条件 | D. | 既不充分也不必要条件 |
8.复数z为纯虚数,若(2-i)•z=a+i,则实数a=( )
A. | 2 | B. | -2 | C. | $\frac{1}{2}$ | D. | -$\frac{1}{2}$ |