题目内容
3.在空间四边形ABCD中,AC=BD,顺次连接它的各边中点E、F、G、H,得四边形EFGH的形状是菱形.分析 作出如图的空间四边形,连接AC,BD可得一个三棱锥,将四个中点连接,得到一个四边形,可证明其是一个菱形.
解答 解:作出如图的空间四边形,
连接AC,BD可得一个三棱锥,
将四个中点连接,得到一个四边形EFGH,
由中位线的性质知,
EH∥FG,EF∥HG
故四边形EFGH是平行四边形,
又AC=BD,
故有HG=$\frac{1}{2}$AC=$\frac{1}{2}$BD=EH,
故四边形EFGH是菱形.
故答案为:菱形.
点评 本题考查空间中直线与干线之间的位置关系,解题的关键是掌握空间中直线与直线之间位置关系的判断方法,本题涉及到线线平行的证明,中位线的性质等要注意这些知识在应用时的转化方式.
练习册系列答案
相关题目
12.下列函数中,周期为π,且在$(\frac{π}{2},π)$上为减函数的是( )
A. | y=cosx | B. | y=2|sinx| | C. | y=cos$\frac{x}{2}$ | D. | y=tanx |