题目内容
已知函数f(x)=2ax-
-(2+a)lnx(a≥0).
(1)当a=0时,求f(x)的极值;
(2)当a>0时,讨论f(x)的单调性;
(3)若对任意的a∈(2,3),x1,x2∈[1,3],恒有(m-ln3)a-2ln3>|f(x1)-f(x2)|成立,求实数m的取值范围。
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042638665319.png)
(1)当a=0时,求f(x)的极值;
(2)当a>0时,讨论f(x)的单调性;
(3)若对任意的a∈(2,3),x1,x2∈[1,3],恒有(m-ln3)a-2ln3>|f(x1)-f(x2)|成立,求实数m的取值范围。
(1)
的极大值为
,无极小值.(3)![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042638728647.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042638696495.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042638712756.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042638728647.png)
试题分析:(1)求已知函数的极值,利用导数法,即求定义域,求导,求导数为0与单调区间,判断极值点求出极值. (2) 求定义域,求导.利用数形结合思想讨论导数(含参数二次不等式)的符号求f(x)的单调区间,讨论二次含参数不等式注意按照定性(二次项系数是否为0),开口,判别式,两根大小得顺序依次进行讨论,进而得到函数f(x)的单调性(注意单调区间为定义域的子集)(3)这是一个恒成立问题,只需要(m-ln3)a-2ln3>(|f(x1)-f(x2)|)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042638743334.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042638743334.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042638790789.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042638743334.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042638743334.png)
试题解析:(1)当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042638837369.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240426388521596.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042638868841.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042638884460.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042638696495.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042638930665.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042638946740.png)
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042638696495.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042638712756.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240426389932916.png)
①当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042639008493.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042638696495.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042638930665.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042639055747.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042639086702.png)
②当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042639102386.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042638696495.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042639133566.png)
③当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042639149415.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042638696495.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042639180674.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042638946740.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042639227702.png)
(3)当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042639242489.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042638696495.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042639289388.png)
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240426393361709.png)
由
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240426393521211.png)
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240426393671336.png)
即
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240426393831283.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042639242489.png)
即
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042639430676.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042639242489.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042639242489.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042639476899.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042638728647.png)
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目