题目内容
【题目】已知函数f(x)=﹣x2+ax+b,且f(4)=﹣3.
(1)若函数f(x)在区间[2,+∞)上递减,求实数b的取值范围;
(2)若函数f(x)的图象关于直线x=1对称,且关于x的方程f(x)=log2m在区间[﹣3,3]上有解,求m的最大值.
【答案】
(1)解:∵函数f(x)在区间[2,+∞)上递减,∴ ,解得a≤4,
又f(4)=﹣3,∴b=﹣4a+13,
∵a≤4,∴b≥﹣3
(2)解:∵ 解得
∴f(x)=﹣x2+2x+5=﹣(x﹣1)2+6,x∈[﹣3,3],
∴f(x)min=f(﹣3)=﹣10,f(x)max=f(1)=6,
∴f(x)在[﹣3,3]上的值域为[﹣10,6],
∴log2m∈[﹣10,6],即m∈[2﹣10,26],
∴m的最大值为26=64
【解析】(1)利用函数值以及对称轴与单调区间的关系,列出不等式求解即可.(2)利用对称轴以及函数值,求出a,b,利用二次函数的闭区间上的最值,求解即可.
【考点精析】掌握二次函数的性质是解答本题的根本,需要知道当时,抛物线开口向上,函数在上递减,在上递增;当时,抛物线开口向下,函数在上递增,在上递减.
练习册系列答案
相关题目