题目内容
【题目】已知等差数列{an}中,a10=30,a20=50.
(1)求通项公式;
(2)若Sn=242,求项数n.
【答案】
(1)解:a10=a1+9d=30,a20=a1+19d=50,
解得 a1=12,d=2.
∴an=a1 +(n﹣1)d=2n+10.
(2)解:∵Sn =na1+ n(n﹣1)d,
∴242=12n+ n(n﹣1)2,解得 n=11,或 n=﹣22 (舍去),
故取n=11.
【解析】(1)由a10=a1+9d=30,a20=a1+19d=50,求出首项和公差,即得等差数列{an} 的通项公式.(2)由Sn =242,可得 242=12n+ n(n﹣1)2,解方程求得项数n 的值.
【考点精析】通过灵活运用等差数列的通项公式(及其变式)和等差数列的前n项和公式,掌握通项公式:或;前n项和公式:即可以解答此题.
练习册系列答案
相关题目
【题目】某地区为了解70﹣80岁的老人的日平均睡眠时间(单位:h),随机选择了50位老人进行调查,下表是这50位老人睡眠时间的频率分布表:
序号i | 分组 | 组中值(Gi) | 频数 | 频率(Fi) |
1 | [4,5) | 4.5 | 6 | 0.12 |
2 | [5,6) | 5.5 | 10 | 0.20 |
3 | [6,7) | 6.5 | 20 | 0.40 |
4 | [7,8) | 7.5 | 10 | 0.20 |
5 | [8,9] | 8.5 | 4 | 0.08 |
在上述统计数据的分析中一部分计算见算法流程图,则输出的S的值为 .