题目内容
【题目】已知函数,其中
(Ⅰ)求的单调区间;
(Ⅱ)若在上存在,使得成立,求的取值范围.
【答案】(1)见解析(2)
【解析】试题分析:(1)函数的单调区间与导数的符号相关,而函数的导数为,故可以根据的符号讨论导数的符号,从而得到函数的单调区间.(2)若不等式 在 上有解,那么在上, .但在上的单调性不确定,故需分 三种情况讨论.
解析:(1),
①当时,在上, 在上单调递增;
②当时,在上;在上;所以在上单调递减,在上单调递增.
综上所述,当时, 的单调递增区间为,当时, 的单调递减区间为,单调递增区间为.
(2)若在上存在,使得成立,则在上的最小值小于.
①当,即时,由(1)可知在上单调递增, 在上的最小值为,由,可得,
②当,即时,由(1)可知在上单调递减, 在上的最小值为,由,可得 ;
③当,即时,由(1)可知在上单调递减,在上单调递增, 在上的最小值为,因为,所以,即,即,不满足题意,舍去.
综上所述,实数的取值范围为.
练习册系列答案
相关题目