题目内容
【题目】直线y=x与函数 的图象恰有三个公共点,则实数m的取值范围是 .
【答案】﹣1≤m<2
【解析】解:根据题意,直线y=x与射线y=2(x>m)有一个交点A(2,2), 并且与抛物线y=x2+4x+2在(﹣∞,m]上的部分有两个交点B、C
由 ,联解得B(﹣1,﹣1),C(﹣2,﹣2)
∵抛物线y=x2+4x+2在(﹣∞,m]上的部分必须包含B、C两点,
且点A(2,2)一定在射线y=2(x>m)上,才能使y=f(x)图象与y=x有3个交点
∴实数m的取值范围是﹣1≤m<2
所以答案是:﹣1≤m<2
【考点精析】根据题目的已知条件,利用函数的零点与方程根的关系的相关知识可以得到问题的答案,需要掌握二次函数的零点:(1)△>0,方程 有两不等实根,二次函数的图象与 轴有两个交点,二次函数有两个零点;(2)△=0,方程 有两相等实根(二重根),二次函数的图象与 轴有一个交点,二次函数有一个二重零点或二阶零点;(3)△<0,方程 无实根,二次函数的图象与 轴无交点,二次函数无零点.
【题目】为了解人们对于国家新颁布的“生育二孩放开”政策的热度,现在对某市年龄在35岁的人调查,随机选取年龄在35岁的100人进行调查,得到他们的情况为:在55名男性中,支持生二孩的有40人,不支持生二孩的有15人;在45名女性中,支持生二孩的有20人,不支持的有25人.
(Ⅰ)完成下面2×2列联表,并判断有多大的把握认为“支持生二孩与性别有关”?
支持生二孩 | 不支持生二孩 | 合计 | |
男性 | |||
女性 | |||
合计 |
附:K2= ,其中n=a+b+c+d
P(K2≥k0) | 0.150 | 0.100 | 0.050 | 0.010 | 0.005 | 0.001 |
k0 | 2.072 | 2.706 | 3.841 | 6.635 | 7.879 | 10.828 |
(Ⅱ)在被调查的人员中,按分层抽样的方法从支持生二孩的人中抽取6人,再用简单随机抽样的方法从这6人中随机抽取2人,求这2人中恰好有1名男性的概率;
(Ⅲ)以上述样本数据估计总体,从年龄在35岁人中随机抽取3人,记这3人中支持生二孩且为男性的人数为X,求X的分布列和数学期望.