题目内容
【题目】为了解人们对于国家新颁布的“生育二孩放开”政策的热度,现在对某市年龄在35岁的人调查,随机选取年龄在35岁的100人进行调查,得到他们的情况为:在55名男性中,支持生二孩的有40人,不支持生二孩的有15人;在45名女性中,支持生二孩的有20人,不支持的有25人.
(Ⅰ)完成下面2×2列联表,并判断有多大的把握认为“支持生二孩与性别有关”?
支持生二孩 | 不支持生二孩 | 合计 | |
男性 | |||
女性 | |||
合计 |
附:K2= ,其中n=a+b+c+d
P(K2≥k0) | 0.150 | 0.100 | 0.050 | 0.010 | 0.005 | 0.001 |
k0 | 2.072 | 2.706 | 3.841 | 6.635 | 7.879 | 10.828 |
(Ⅱ)在被调查的人员中,按分层抽样的方法从支持生二孩的人中抽取6人,再用简单随机抽样的方法从这6人中随机抽取2人,求这2人中恰好有1名男性的概率;
(Ⅲ)以上述样本数据估计总体,从年龄在35岁人中随机抽取3人,记这3人中支持生二孩且为男性的人数为X,求X的分布列和数学期望.
【答案】解:(I)由已知可得:下面2×2列联表,
支持生二孩 | 不支持生二孩 | 合计 | |
男性 | 40 | 15 | 55 |
女性 | 20 | 25 | 45 |
合计 | 60 | 40 | 100 |
K2= ≈8.25>7.879.
∴有99.5%的把握认为“支持生二孩与性别有关”.
(II)在被调查的人员中,按分层抽样的方法从支持生二孩的人中抽取6人,抽取的男性4人,女性2人.
再用简单随机抽样的方法从这6人中随机抽取2人,则这2人中恰好有1名男性的概率P= = .
(III)由题意可得X的可能取值为:0,1,2,3.
X~B ,可得P(X=k)= ,可得P(X=0)= ,P(X=1)= ,P(X=2)= ,P(X=3)= .
可得:EX=3× = .
【解析】(I)由已知可得:下面2×2列联表,计算K2= ,即可判断出结论.(II)在被调查的人员中,按分层抽样的方法抽取6人可得:抽取的男性4人,女性2人.再用简单随机抽样的方法从这6人中随机抽取2人,则这2人中恰好有1名男性的概率P= .(III)由题意可得X的可能取值为:0,1,2,3.X~B ,可得P(X=k)= .
【考点精析】利用离散型随机变量及其分布列对题目进行判断即可得到答案,需要熟知在射击、产品检验等例子中,对于随机变量X可能取的值,我们可以按一定次序一一列出,这样的随机变量叫做离散型随机变量.离散型随机变量的分布列:一般的,设离散型随机变量X可能取的值为x1,x2,.....,xi,......,xn,X取每一个值 xi(i=1,2,......)的概率P(ξ=xi)=Pi,则称表为离散型随机变量X 的概率分布,简称分布列.