题目内容
18.若不等式组$\left\{\begin{array}{l}{x-y≤0}\\{x-2y+2≥0}\\{x≥m}\end{array}\right.$表示的平面区域是面积为$\frac{16}{9}$的三角形,则m的值为( )A. | $\frac{14}{3}$ | B. | -$\frac{2}{3}$ | C. | -$\frac{2}{3}$或$\frac{14}{3}$ | D. | -$\frac{3}{2}$ |
分析 作出不等式组对应的平面区域,利用三角形的面积,即可得到结论.
解答 解:作出不等式组对应的平面区域如图,
若对应的区域为三角形,则m<2,
由$\left\{\begin{array}{l}{x=m}\\{x-y=0}\end{array}\right.$,得$\left\{\begin{array}{l}{x=m}\\{y=m}\end{array}\right.$,即C(m,m),
由$\left\{\begin{array}{l}{x=m}\\{x-2y+2=0}\end{array}\right.$,得$\left\{\begin{array}{l}{x=m}\\{y=\frac{m+2}{2}}\end{array}\right.$,即B(m,$\frac{m+2}{2}$),
由$\left\{\begin{array}{l}{x-y=0}\\{x-2y+2=0}\end{array}\right.$,得$\left\{\begin{array}{l}{x=2}\\{y=2}\end{array}\right.$,即A(2,2),
则三角形ABC的面积S=$\frac{1}{2}$×($\frac{m+2}{2}$-m)×(2-m)=$\frac{16}{9}$,
即(2-m)2=$\frac{64}{9}$,
解得2-m=$\frac{8}{3}$,或2-m=-$\frac{8}{3}$,
即m=$-\frac{2}{3}$或m=$\frac{14}{3}$(舍),
故选:B
点评 本题主要考查线性规划的应用,利用数形结合作出对应的图象,利用三角形的面积公式是解决本题的关键.
练习册系列答案
相关题目
8.已知A={1,2},B={2,3},C={1,3},则(A∩B)∪C=( )
A. | {1,2} | B. | {1,3} | C. | {1,2,3} | D. | {2,3} |
13.给出以下四个判断:
①线段AB在平面α内,则直线AB不一定在平面α内;
②两平面有一个公共点,则它们一定有无数个公共点;
③三条平行直线共面;
④有三个公共点的两平面重合.
其中不正确的判断的个数为3..
①线段AB在平面α内,则直线AB不一定在平面α内;
②两平面有一个公共点,则它们一定有无数个公共点;
③三条平行直线共面;
④有三个公共点的两平面重合.
其中不正确的判断的个数为3..
8.已知等比数列{an}前n项和为Sn,则“a1>0”是“S2013>0”的( )
A. | 充分不必要条件 | B. | 必要不充分条件 | ||
C. | 充要条件 | D. | 既不充分也不必要条件 |