题目内容

【题目】已知在四面体ABCD中,E,F分别是AC,BD的中点,若AB=2,CD=4,EF⊥AB,则EF与CD所成的角的度数为(
A.90°
B.45°
C.60°
D.30°

【答案】D
【解析】解:设G为AD的中点,连接GF,GE,
则GF,GE分别为△ABD,△ACD的中线.
由此可得,GF∥AB且GF= AB=1,
GE∥CD,且GE= CD=2,
∴∠FEG或其补角即为EF与CD所成角.
又∵EF⊥AB,GF∥AB,∴EF⊥GF
因此,Rt△EFG中,GF=1,GE=2,
由正弦的定义,得sin∠GEF= = ,可得∠GEF=30°.
∴EF与CD所成的角的度数为30°
故选:D
【考点精析】通过灵活运用异面直线及其所成的角,掌握异面直线所成角的求法:1、平移法:在异面直线中的一条直线中选择一特殊点,作另一条的平行线;2、补形法:把空间图形补成熟悉的或完整的几何体,如正方体、平行六面体、长方体等,其目的在于容易发现两条异面直线间的关系即可以解答此题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网