题目内容

7.如图,在⊙O中,相交于点E的两弦AB,CD的中点分别是M,N,直线MO与直线CD相交于点F,证明:
(1)∠MEN+∠NOM=180°
(2)FE•FN=FM•FO.

分析 (1)证明O,M,E,N四点共圆,即可证明∠MEN+∠NOM=180°
(2)证明△FEM∽△FON,即可证明FE•FN=FM•FO.

解答 证明:(1)∵N为CD的中点,
∴ON⊥CD,
∵M为AB的中点,
∴OM⊥AB,
在四边形OMEN中,∴∠OME+∠ONE=90°+90°=180°,
∴O,M,E,N四点共圆,
∴∠MEN+∠NOM=180°
(2)在△FEM与△FON中,∠F=∠F,∠FME=∠FNO=90°,
∴△FEM∽△FON,
∴$\frac{FE}{FO}$=$\frac{FM}{FN}$
∴FE•FN=FM•FO.

点评 本题考查垂径定理,考查三角形相似的判定与应用,考查学生分析解决问题的能力,比较基础.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网