题目内容

16.若实数a,b,c成等差数列,点P(-1,0)在动直线ax+by+c=0上的射影为点M,已知点N(3,3),则线段MN的最大值与最小值的和为10.

分析 由a,b,c成等差数列,利用等差数列的性质得到2b=a+c,整理后与直线方程ax+by+c=0比较发现,直线ax+by+c=0恒过Q(1,-2),再由点P(-1,0)在动直线ax+by+c=0上的射影为M,得到PM与QM垂直,利用圆周角定理得到M在以PQ为直径的圆上,由P和Q的坐标,利用中点坐标公式求出圆心A的坐标,利用两点间的距离公式求出此圆的半径r,线段MN长度的最大值即为M与圆心A的距离与半径的和,求出即可

解答 解:∵a,b,c成等差数列,
∴2b=a+c,即a-2b+c=0,
可得方程ax+by+c=0恒过Q(1,-2),
又点P(-1,0)在动直线ax+by+c=0上的射影为M,
∴∠PMQ=90°,
∴M在以PQ为直径的圆上,
∴此圆的圆心A坐标为($\frac{1-1}{2}$,$\frac{-2+0}{2}$),即A(0,-1),半径r=$\frac{1}{2}$|PQ|=$\frac{1}{2}$$\sqrt{(1+1)^{2}+(-2)^{2}}$=$\sqrt{2}$,
又N(3,3),
∴|AN|=5,
则|MN|max=5+$\sqrt{2}$,最小值为5-$\sqrt{2}$,所以线段MN的最大值与最小值的和为10.
故答案为:10.

点评 此题考查了等差数列的性质,恒过定点的直线方程,圆周角定理,线段中点坐标公式,以及两点间的距离公式,利用等差数列的性质得到2b=a+c,即a-2b+c=0是解本题的突破点.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网