题目内容

已知定义域是(0,+∞)的函数f(x)满足;
(1)对任意x∈(0,+∞),恒有f(3x)=3f(x)成立;
(2)当x∈(1,3]时,f(x)=3-x.给出下列结论:
①对任意m∈Z,有f(3m)=0;
②函数f(x)的值域为[0,+∞);
③存在n∈Z,使得f(3n+1)=0;
④“函数f(x)在区间(a,b)上单调递减”的充要条件是“?k∈Z,使得(a,b)⊆(3k,3k+1).”
其中正确结论的序号是______.
①∵对任意x∈(0,+∞),恒有f(3x)=3f(x)成立,当x∈(1,3]时,f(x)=3-x.
∴f(3m)=f(3•3m-1)=3f(3m-1)=…=3m-1f(3)=0,故①正确;
②取x∈(3m,3m+1],则
x
3m
∈(1,3],
f(
x
3m
)=3-
x
3m
,f(
x
3
)=…=3mf(
x
3m
)=3m+1-x,从而函数f(x)的值域为[0,+∞);即②正确;=3m+1-x,
从而f(x)∈[0,+∞),故②正确;
③∵x∈(1,3]时,f(x)=3-x,对任意x∈(0,+∞),恒有f(3x)=3f(x)成立,n∈Z,
∴f(3n+1)=3nf(1+
1
3n
)=3n[3-(1+
1
3n
)]=3n(2-
1
3n
)≠0,故③错误;
④令3k≤a<b≤3k+1
则1≤
a
3k
b
3k
≤3,
∴f(a)-f(b)=f(3k
a
3k
)-f(3k
b
3k
)=3k[f(
a
3k
)-f(
b
3k
)]=3k[(3-
a
3k
)-(3-
b
3k
)]=3k
b
3k
-
a
3k
)=b-a>0,
∴函数f(x)在区间(a,b))⊆(3k,3k+1)上单调递减,
故④正确;
综上所述,正确结论的序号是①②④.
故答案为:①②④.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网