题目内容
8.设数列{an},{bn}满足an+1=an+bn,bn+1=2bn,其中n∈N*,若$[{\begin{array}{l}{{a_{n+4}}}\\{{b_{n+4}}}\end{array}}]=M[{\begin{array}{l}{a_n}\\{{b_n}}\end{array}}]$,则二阶矩阵M=$[\begin{array}{l}{1}&{15}\\{0}&{16}\end{array}]$.分析 通过数列相关各项之间的关系即可求出矩阵M.
解答 解:∵bn+1=2bn,
∴bn+4=16bn,bn+3=8bn,bn+2=4bn,
∵an+1-an=bn,
∴an+4=an+3+bn+3
=an+2+bn+2+bn+3
=an+1+bn+1+bn+2+bn+3
=an+bn+bn+1+bn+2+bn+3
=an+bn+2bn+4bn+8bn
=an+15bn,
∵$[{\begin{array}{l}{{a_{n+4}}}\\{{b_{n+4}}}\end{array}}]=M[{\begin{array}{l}{a_n}\\{{b_n}}\end{array}}]$,
∴M=$[\begin{array}{l}{1}&{15}\\{0}&{16}\end{array}]$,
故答案为:$[\begin{array}{l}{1}&{15}\\{0}&{16}\end{array}]$.
点评 本题考查矩阵及逆矩阵,注意解题方法的积累,属于中档题.
练习册系列答案
相关题目
18.$\frac{1+cos20°}{2sin20°}$-sin10°(tan-15°-tan5°)=( )
A. | $\sqrt{3}$ | B. | 1 | C. | 2 | D. | $\frac{\sqrt{3}}{2}$ |
13.如图,在正四棱锥S-ABCD中,E,M,N分别是BC,CD,SC的中点,动点P在线段MN上运动时,下列四个结论:①EP∥BD;②EP⊥AC;③EP⊥面SAC;④EP∥面SBD中恒成立的为( )
A. | ②④ | B. | ③④ | C. | ①② | D. | ①③ |
17.若2a>3b>0,则2a+$\frac{1}{3b(2a-3b)}$的最小值为( )
A. | 3 | B. | 6 | C. | 9 | D. | 27 |