题目内容
18.$\frac{1+cos20°}{2sin20°}$-sin10°(tan-15°-tan5°)=( )A. | $\sqrt{3}$ | B. | 1 | C. | 2 | D. | $\frac{\sqrt{3}}{2}$ |
分析 由条件利用同角三角函数的基本关系、倍角公式,把要求的式子化为=$\frac{cos10°}{2sin10°}$-2cos10°,通分后利用诱导公式、和差化积公式化为cos30°,从而得到结果.
解答 解:原式=$\frac{2co{s}^{2}10°}{4sin10°cos10°}-sin10°×\frac{1-ta{n}^{2}5°}{tan5°}$
=$\frac{cos10°}{2sin10°}-sin10°×2ta{n}^{-1}10°$
=$\frac{cos10°}{2sin10°}-2sin10°×\frac{cos10°}{sin10°}$
=$\frac{cos10°}{2sin10°}-2cos10°$
=$\frac{cos10°-4sin10°cos10°}{2sin10°}$
=$\frac{sin80°-sin20°-sin20°}{2sin10°}$
=$\frac{2cos50°sin30°-sin20°}{2sin10°}$
=$\frac{sin40°-sin20°}{2sin10°}$
=$\frac{2cos30°sin10°}{2sin10°}$
=cos30°
=$\frac{\sqrt{3}}{2}$.
故选D.
点评 本题主要考查同角三角函数的基本关系、诱导公式、和差化积公式的应用,属于中档题
练习册系列答案
相关题目
6.不等式x2-2x+1≥a2-2a对任意实数x恒成立,则实数a的取值范围为( )
A. | (-∞,0]∪[2,+∞) | B. | (-∞,-2]∪[0,+∞) | C. | [0,2] | D. | [-2,0] |
13.四个学习小组分别对不同的变量组(每组为两个变量)进行该组两变量间的线性相关作实验,并用回归分析的方法分别求得相关系数r与方差m如表所示,其中哪个小组所研究的对象(组内两变量)的线性相关性更强( )
第一组 | 第二组 | 第三组 | 第四组 | |
R | 0.75 | 0.87 | 0.62 | 0.78 |
M | 98 | 93 | 95 | 96 |
A. | 第一组 | B. | 第二组 | C. | 第三组 | D. | 第四组 |
10.已知x与y之间的几组数据如下表:
假设根据上表数据所得线性回归方程为$\widehat{y}$=$\widehat{b}$x+$\widehat{a}$,根据中间两组数据(4,3)和(5,4)求得的直线方程为y=bx+a,则$\widehat{b}$与b,$\widehat{a}$与a的大小为( )
x | 3 | 4 | 5 | 6 |
y | 2.5 | 3 | 4 | 4.5 |
A. | $\widehat{b}$>b,$\widehat{a}$>a | B. | $\widehat{b}$>b,$\widehat{a}$<a | C. | $\widehat{b}$<b,$\widehat{a}$>a | D. | $\widehat{b}$<b,$\widehat{a}$<a |
7.“开门大吉”是某电视台推出的游戏节目.选手面对1~8号8扇大门,依次按响门上的门铃,门铃会播放一段音乐(将一首经典流行歌曲以单音色旋律的方式演绎),选手需正确回答出这首歌的名字,方可获得该扇门对应的家庭梦想基金.在一次场外调查中,发现参赛选手多数分为两个年龄段:20~30;30~40(单位:岁),其猜对歌曲名称与否的人数如图所示.
(1)写出2×2列联表;判断是否有90%的把握认为猜对歌曲名称与否和年龄有关;说明你的理由;(下面的临界值表供参考)
(参考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)
(2)现计划在这次场外调查中按年龄段选取6名选手,并抽取3名幸运选手,求3名幸运选手中在20~30岁之间的人数的分布列和数学期望.
(1)写出2×2列联表;判断是否有90%的把握认为猜对歌曲名称与否和年龄有关;说明你的理由;(下面的临界值表供参考)
(参考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)
P(K2≥k0) | 0.10 | 0.05 | 0.010 | 0.005 |
k0 | 2.706 | 3.841 | 6.635 | 7.879 |