题目内容
19.已知抛物线y2=4x与双曲线$\frac{x^2}{a^2}-{y^2}=1$的一个交点为M,F为抛物线的焦点,若MF=3,则该双曲线的离心率为$\sqrt{6}$.分析 求得抛物线的焦点和准线方程,设M(m,n),则由抛物线的定义可得m=3,进而得到M的坐标,代入双曲线的方程,可得a,即可求出双曲线的离心率.
解答 解:抛物线y2=4x的焦点F(1,0),准线方程为x=-1,
设M(m,n),则由抛物线的定义可得|MF|=m+2=3,解得m=1,
由n2=4,可得n=±2.
将M(1,±2)代入双曲线$\frac{x^2}{a^2}-{y^2}=1$,
解得a2=$\frac{1}{5}$,
所以a=$\frac{\sqrt{5}}{5}$,c=$\frac{\sqrt{30}}{5}$
即有双曲线的离心率为$\sqrt{6}$.
故答案为:$\sqrt{6}$.
点评 本题考查抛物线和双曲线的定义、方程和性质,主要考查抛物线的定义和双曲线的渐近线方程,考查运算能力,属于基础题.
练习册系列答案
相关题目
10.已知x与y之间的几组数据如下表:
假设根据上表数据所得线性回归方程为$\widehat{y}$=$\widehat{b}$x+$\widehat{a}$,根据中间两组数据(4,3)和(5,4)求得的直线方程为y=bx+a,则$\widehat{b}$与b,$\widehat{a}$与a的大小为( )
x | 3 | 4 | 5 | 6 |
y | 2.5 | 3 | 4 | 4.5 |
A. | $\widehat{b}$>b,$\widehat{a}$>a | B. | $\widehat{b}$>b,$\widehat{a}$<a | C. | $\widehat{b}$<b,$\widehat{a}$>a | D. | $\widehat{b}$<b,$\widehat{a}$<a |
7.“开门大吉”是某电视台推出的游戏节目.选手面对1~8号8扇大门,依次按响门上的门铃,门铃会播放一段音乐(将一首经典流行歌曲以单音色旋律的方式演绎),选手需正确回答出这首歌的名字,方可获得该扇门对应的家庭梦想基金.在一次场外调查中,发现参赛选手多数分为两个年龄段:20~30;30~40(单位:岁),其猜对歌曲名称与否的人数如图所示.
(1)写出2×2列联表;判断是否有90%的把握认为猜对歌曲名称与否和年龄有关;说明你的理由;(下面的临界值表供参考)
(参考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)
(2)现计划在这次场外调查中按年龄段选取6名选手,并抽取3名幸运选手,求3名幸运选手中在20~30岁之间的人数的分布列和数学期望.
(1)写出2×2列联表;判断是否有90%的把握认为猜对歌曲名称与否和年龄有关;说明你的理由;(下面的临界值表供参考)
(参考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)
P(K2≥k0) | 0.10 | 0.05 | 0.010 | 0.005 |
k0 | 2.706 | 3.841 | 6.635 | 7.879 |
14.(x-$\frac{2}{\sqrt{x}}$)6的展开式中的常数项为( )
A. | 240 | B. | -240 | C. | 72 | D. | -72 |