题目内容
【题目】用数学归纳法证明“n3+(n+1)3+(n+2)3 , (n∈N+)能被9整除”,要利用归纳法假设证n=k+1时的情况,只需展开( ).
A.(k+3)3
B.(k+2)3
C.(k+1)3
D.(k+1)3+(k+2)3
【答案】A
【解析】假设n=k时,原式k3+(k+1)3+(k+2)3能被9整除,当n=k+1时,(k+1)3.+(k+2)3+(k+3)3为了能用上面的归纳假设,只须将(k+3)3展开,让其出现k3即可.故应选A.
【考点精析】通过灵活运用数学归纳法的步骤,掌握
- 步骤:A.命题在n=1(或)时成立,这是递推的基础;B.假设在n=k时命题成立; C.证明n=k+1时命题也成立,完成这两步,就可以断定对任何自然数(或n>=,且)结论都成立
即可以解答此题.
练习册系列答案
相关题目