题目内容
【题目】已知函数f(x)的图象关于y轴对称,并且是[0,+∞)上的减函数,若f(lgx)>f(1),则实数x的取值范围是( )
A.
B.
C.
D.(0,1)
【答案】C
【解析】解:∵函数f(x)的图象关于y轴对称,并且是[0,+∞)上的减函数,故在(﹣∞,0]上单调递增,且f(1)=f(﹣1). 故由f(lgx)>f(1),可得﹣1<lgx<1,解得 <x<10,
故选C.
【考点精析】解答此题的关键在于理解函数单调性的性质的相关知识,掌握函数的单调区间只能是其定义域的子区间 ,不能把单调性相同的区间和在一起写成其并集,以及对函数奇偶性的性质的理解,了解在公共定义域内,偶函数的加减乘除仍为偶函数;奇函数的加减仍为奇函数;奇数个奇函数的乘除认为奇函数;偶数个奇函数的乘除为偶函数;一奇一偶的乘积是奇函数;复合函数的奇偶性:一个为偶就为偶,两个为奇才为奇.
练习册系列答案
相关题目
【题目】为了解心肺疾病是否与年龄相关,现随机抽取80名市民,得到数据如下表:
患心肺疾病 | 不患心肺疾病 | 合计 | |
大于40岁 | 16 | ||
小于或等于40岁 | 12 | ||
合计 | 80 |
已知在全部的80人中随机抽取1人,抽到不患心肺疾病的概率为
下面的临界值表供参考:
P(K2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(参考公式:K2= ,其中n=a+b+c+d)
(1)请将2×2列联表补充完整;
(2)能否在犯错误的概率不超过0.025的前提下认为患心肺疾病与年龄有关?