题目内容

【题目】某学校为了解学校食堂的服务情况,随机调查了50名就餐的教师和学生.根据这50名师生对餐厅服务质量进行评分,绘制出了频率分布直方图(如图所示),其中样本数据分组为[40,50),[50,60),…,[90,100].
(1)求频率分布直方图中a的值;
(2)从评分在[40,60)的师生中,随机抽取2人,求此人中恰好有1人评分在[40,50)上的概率;
(3)学校规定:师生对食堂服务质量的评分不得低于75分,否则将进行内部整顿,试用组中数据估计该校师生对食堂服务质量评分的平均分,并据此回答食堂是否需要进行内部整顿.

【答案】
(1)解:由(0.004+a+0.022+0.028+0.022+0.018)×10=1,

解得a=0.006


(2)解:设被抽取的2人中恰好有一人评分在[40,50)上为事件A.

因为样本中评分在[40,50)的师生人数为:m1=0.004×10×50=2,记为1,2号

样本中评分在[50,60)的师生人数为:m2=0.006×10×50=3,记为3,4,5号

所以从5人中任意取2人共有:

(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),

(2,5),(3,4),(3,5),(4,5)共10种等可能情况,

2人中恰有1人评分在[40,50)上有:

(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)共6种等可能情况.

∴2人中恰好有1人评分在[40,50)上的概率为P(A)= =


(3)解:服务质量评分的平均分为:

=45×0.004×10+55×0.006×10+65×0.022×10+75×0.028×10+85×0.022×10+95×0.018×10=76.2.

∵76.2>75,∴食堂不需要内部整顿


【解析】(1)由频率分布直方图中小矩形面积之和为1,能求出a的值.(2)设被抽取的2人中恰好有一人评分在[40,50)上为事件A.样本中评分在[40,50)的师生人数为2,记为1,2号样本中评分在[50,60)的师生人数为3,记为3,4,5号,由此利用列举法能求出从5人中任意取2人,2人中恰好有1人评分在[40,50)上的概率.(3)求出服务质量评分的平均分为76.2>75,从而得到食堂不需要内部整顿.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网