题目内容
【题目】在下列结论中: ①函数y=sin(kπ﹣x)(k∈Z)为奇函数;
②函数 的图象关于点 对称;
③函数 的图象的一条对称轴为 π;
④若tan(π﹣x)=2,则cos2x= .
其中正确结论的序号为(把所有正确结论的序号都填上).
【答案】①③④
【解析】解:对于①函数y=sin(kπ﹣x)(k∈Z),当k为奇数时,函数即y=sinx,为奇函数. 当k为偶数时,函数即y=﹣sinx,为奇函数.故①正确.
对于②,当x= 时,函数y=tan = ≠0,故 y=tan(2x+ )的图象不关于点( ,0)对称,故②不正确.
对于③,当x= 时,函数y=cos(2x+ )=cos(﹣π)=﹣1,是函数y 的最小值,故③的图象关于直线x= 对称.
对于④,若tan(π﹣x)=2,则tanx=2,tan2x=4,cos2x= , ,故④正确.
故答案为:①③④.
利用诱导公式、分类讨论可得y=sinx 为奇函数,故①正确.
由于当x= 时,函数y=tan = ≠0,故( ,0)不是函数的对称中心,故②不正确.
当x= 时,函数y取得最小值﹣1,故③的图象关于直线x= 对称,故③正确.
若tan(π﹣x)=2,则tanx=2,由同脚三角函数的基本关系可得cos2x= , ,故④正确.
【题目】某市的教育主管部门对所管辖的学校进行年终督导评估,为了解某学校师生对学校教学管理的满意度,分别从教师和不同年级的同学中随机抽取若干师生,进行评分(满分100分),绘制如下频率分布直方图(分组区间为, , , , , ),并将分数从低到高分为四个等级:
满意度评分 | ||||
满意度等级 | 不满意 | 基本满意 | 满意 | 非常满意 |
已知满意度等级为基本满意的有340人.
(1)求表中的值及不满意的人数;
(2)在等级为不满意的师生中,老师占,现从该等级师生中按分层抽样抽取12人了解不满意的原因,并从中抽取3人担任整改督导员,记为老师整改督导员的人数,求的分布列及数学期望.
【题目】某工厂为了对新研究的一种产品进行合理定价,将该产品按事先拟定的价格进行试销,得到如下数据:
单价x元 | 8 | 8.2 | 8.4 | 8.6 | 8.8 | 9 |
销售y件 | 90 | 84 | 83 | 80 | 75 | 68 |
(1)求回归直线方程 ,其中 =﹣20.
(2)预计在今后的销售中,销售与单价仍然服从(1)中的关系,且该产品的成本是4元/件,为使工厂获得最大利润,该产品的单价定为多少元?