题目内容
在等比数列{an}中,前n项的和为Sn
(1)公比q=3,S3=
,求通项an
(2)a2=6,6a1+a3=30,求Sn.
(1)公比q=3,S3=
13 |
3 |
(2)a2=6,6a1+a3=30,求Sn.
(1)由题意可得S3=
=
,解得a1=
,
∴通项公式an=
×3n-1=3n-2;
(2)设数列的公比为q,则a2=a1q=6,6a1+a3=6a1+a1q2=30,
两式相除可得
=5,即q2-5q+6=0,解得q=2,或q=3,
当q=2时,a1=3,此时Sn=
=3×2n-3,
当q=3时,a1=2,此时Sn=
=3n-1
a1(1-33) |
1-3 |
13 |
3 |
1 |
3 |
∴通项公式an=
1 |
3 |
(2)设数列的公比为q,则a2=a1q=6,6a1+a3=6a1+a1q2=30,
两式相除可得
6+q2 |
q |
当q=2时,a1=3,此时Sn=
3(1-2n) |
1-2 |
当q=3时,a1=2,此时Sn=
2(1-3n) |
1-3 |
练习册系列答案
相关题目