题目内容
8.已知函数f(x)=x2+x-ln(1+x)(I)讨论函数f(x)的单调性;
(Ⅱ)若关于x的方程f(x)=$\frac{5}{2}$x-b在区间[0,2]上恰有两个不同的实数根,求实数b的取值范围;
(Ⅲ)证明:对任意的正整数n,不等式2+$\frac{3}{4}$+$\frac{4}{9}$+…+$\frac{n+1}{{n}^{2}}$>ln(n+1)都成立.
分析 (Ⅰ)先求出函数f(x)的导数,解关于导函数的不等式,从而求出函数的单调区间;
(2)关于x的方程f(x)=$\frac{5}{2}$x-b在区间[0,2]上恰有两个不同的实数根,将问题转化为φ(x)=0,在区间[0,2]上恰有两个不同的实数根,对φ(x)对进行求导,从而求出b的范围;
(3)f(x)=x2+x-ln(x+1)的定义域为{x|x>-1},利用导数研究其单调性,可以推出ln(x+1)-x2-x≤0,令x=$\frac{1}{n}$,可以得到ln($\frac{n+1}{n}$)<$\frac{n+1}{{n}^{2}}$,利用此不等式进行放缩证明.
解答 解:(Ⅰ)函数f(x)的定义域为(-1,+∞),且f′(x)=2x+1-$\frac{1}{x+1}$=$\frac{x(2x+3)}{x+1}$,
令f′(x)>0,解得:x>0,令f′(x)<0,解得:-1<x<0,
∴函数f(x)在(-1,0)递减,在(0,+∞)递增;
(Ⅱ)f(x)=x2+x-ln(x+1)
由f(x)=$\frac{5}{2}$x-b,得ln(x+1)-x2+$\frac{3}{2}$x-b=0
令φ(x)=ln(x+1)-x2+$\frac{3}{2}$x-b,
则f(x)=$\frac{5}{2}$x-b在区间[0,2]上恰有两个不同的实数根等价于φ(x)=0在区间[0,2]上恰有两个不同的实数根.
φ′(x)=$\frac{1}{x+1}$-2x+$\frac{3}{2}$=$\frac{-(4x+5)(x-1)}{2(x+1)}$,
当x∈[0,1]时,φ′(x)>0,于是φ(x)在[0,1)上单调递增;
当x∈(1,2]时,φ′(x)<0,于是φ(x)在(1,2]上单调递减,
依题意有φ(0)=-b≤0,
φ(1)=ln(1+1)-1+$\frac{3}{2}$-b>0,
φ(2)=ln(1+2)-4+3-b≤0
解得,ln3-1≤b<ln2+$\frac{1}{2}$,
故实数b的取值范围为:[ln3-1,ln2+$\frac{1}{2}$);
(Ⅲ):f(x)=x2+x-ln(x+1)的定义域为{x|x>-1},
由(1)知f′(x)=2x+1-$\frac{1}{x+1}$=$\frac{x(2x+3)}{x+1}$,
令f′(x)=0得,x=0或x=-$\frac{3}{2}$(舍去),
∴当-1<x<0时,f′(x)<0,f(x)单调递减;
当x>0时,f′(x)>0,f(x)单调递增.
∴f(0)为f(x)在(-1,+∞)上的最小值.
∴f(x)≥f(0),故ln(x+1)-x2-x≤0(当且仅当x=0时,等号成立)
对任意正整数n,取x=$\frac{1}{n}$>0得,ln($\frac{1}{n}$+1)<$\frac{1}{n}$+$\frac{1}{{n}^{2}}$,
∴ln($\frac{n+1}{n}$)<$\frac{n+1}{{n}^{2}}$,
故2+$\frac{3}{4}$>ln2+ln$\frac{3}{2}$+ln$\frac{4}{3}$+…+ln$\frac{n+1}{n}$=ln(n+1).
点评 本题考查利用导数研究函数的极值及单调性,解题过程中用到了分类讨论的思想,分类讨论的思想也是高考的一个重要思想,要注意体会其在解题中的运用,第三问难度比较大,利用了前两问的结论进行证明,此题属于难题.
A. | a>b>c | B. | c>a>b | C. | c>b>a | D. | b>a>c |
A. | -$\frac{1}{2}$ | B. | -$\frac{\sqrt{3}}{2}$ | C. | $\frac{1}{2}$ | D. | $\frac{\sqrt{3}}{2}$ |
身高达标 | 身高不达标 | 总计 | |
积极参加体育锻炼 | 40 | 75 | |
不 积极参加体育锻炼 | 10 | ||
总计 | 100 |
(2)能否在犯错误的概率不超过0.15的前提下认为体育锻炼与身高达标有关系(K2的观察值精确到0.001)?
参考:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)^{2}}$
P(k2≥k0) | 0.15 | 0.10 |
k0 | 2.072 | 2.706 |