题目内容

【题目】如果一个实数数列{an}满足条件: (d为常数,n∈N*),则称这一数列“伪等差数列”,d称为“伪公差”.给出下列关于某个伪等差数列{an}的结论:①对于任意的首项a1 , 若d<0,则这一数列必为有穷数列;②当d>0,a1>0时,这一数列必为单调递增数列;③这一数列可以是一个周期数列;④若这一数列的首项为1,伪公差为3,- 可以是这一数列中的一项;n∈N*⑤若这一数列的首项为0,第三项为﹣1,则这一数列的伪公差可以是 .其中正确的结论是

【答案】③④
【解析】解:①当a1= 、d=﹣ 、an>0时,
依题意,an= ,故不正确;
②当d>0,a1>0时,
∵an+1
∴这一数列不是单调递增数列,故不正确;
③易知当伪公差d=0、an=1时,这一数列是周期数列,故正确;
④∵a1=1,d=3,
∴a2 =±2,
∴当a2=2时a3 ,故正确;
⑤∵a1=0,a3=﹣1,
=a1+d=d,
∴d≥0,
<0,故不正确;
综上所述:③④正确,①②⑤不正确,
所以答案是:③④.
【考点精析】本题主要考查了数列的通项公式的相关知识点,需要掌握如果数列an的第n项与n之间的关系可以用一个公式表示,那么这个公式就叫这个数列的通项公式才能正确解答此题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网