题目内容

18.已知F1(-c,0),F2(c,0)为椭圆$\frac{{x}^{2}}{{a}^{2}}$$+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的两个焦点,若椭圆上存在点P满足$\overrightarrow{P{F}_{1}}$•$\overrightarrow{P{F}_{2}}$=2c2,则此椭圆离心率的取值范围是(  )
A.[$\frac{1}{2}$,$\frac{\sqrt{3}}{3}$]B.(0,$\frac{\sqrt{2}}{2}$]C.[$\frac{\sqrt{3}}{3}$,1)D.[$\frac{\sqrt{2}}{3}$,$\frac{\sqrt{3}}{3}$]

分析 设P(x0,y0),则2c2=$\overrightarrow{P{F}_{1}}•\overrightarrow{P{F}_{2}}$,化为${y}_{0}^{2}=3{c}^{2}-{x}_{0}^{2}$.又$\frac{{x}_{0}^{2}}{{a}^{2}}+\frac{{y}_{0}^{2}}{{b}^{2}}=1$,可得${x}_{0}^{2}$=$3{a}^{2}-\frac{{a}^{2}{b}^{2}}{{c}^{2}}$,利用$0≤{x}_{0}^{2}≤{a}^{2}$,利用离心率计算公式即可得出.

解答 解:设P(x0,y0),则2c2=$\overrightarrow{P{F}_{1}}•\overrightarrow{P{F}_{2}}$=(-c-x0,-y0)•(c-x0,-y0)=${x}_{0}^{2}-{c}^{2}$+${y}_{0}^{2}$,化为${y}_{0}^{2}=3{c}^{2}-{x}_{0}^{2}$.
又$\frac{{x}_{0}^{2}}{{a}^{2}}+\frac{{y}_{0}^{2}}{{b}^{2}}=1$,∴${x}_{0}^{2}$=$3{a}^{2}-\frac{{a}^{2}{b}^{2}}{{c}^{2}}$,
∵$0≤{x}_{0}^{2}≤{a}^{2}$,
∴$0≤3-\frac{{b}^{2}}{{c}^{2}}≤1$,
∵b2=a2-c2,∴$3≤\frac{1}{{e}^{2}}≤4$,
∴$\frac{1}{2}≤e≤\frac{\sqrt{3}}{3}$.
故选:A.

点评 本题考查了椭圆的标准方程及其性质、向量数量积运算性质、不等式的性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网