题目内容
4.抛物线的弦与过弦的端点的两条切线所围成的三角形称为阿基米德三角形.阿基米德三角形有一些有趣的性质,如若抛物线的弦过焦点,则过弦的端点的两条切线的交点在其准线上.设抛物线y2=4px(p>0),弦AB过焦点,△ABQ为其阿基米德三角形,则△ABQ的面积的最小值为p2.分析 由于若抛物线的弦过焦点,则过弦的端点的两条切线的交点在其准线上,且△PAB为直角三角型,且角P为直角.又面积是直角边积的一半,斜边是两直角边的平方和,故可求
解答 解:由于若抛物线的弦过焦点,则过弦的端点的两条切线的交点在其准线上,且△PAB为直角三角型,且角P为直角,S=$\frac{1}{2}$PA•PB≤$\frac{A{B}^{2}}{4}$,
由于于AB是通径时,即AB=2p最小,
故S≤p2,
故答案为:p2.
点评 本题考查了圆锥曲线的定义和性质,△PAB称作阿基米德三角型.该三角形满足以下特性:1、P点必在抛物线的准线上;2、△PAB为直角三角型,且角P为直角;3、PF⊥AB(即符合射影定理)等.灵活利用性质是解题的关键,属于中档题.
练习册系列答案
相关题目
20.在平面直角坐标系xOy中,双曲线中心在原点,焦点在y轴上,一条渐近线方程为x-3y=0,则它的离心率为( )
A. | $\sqrt{5}$ | B. | $\sqrt{10}$ | C. | 2$\sqrt{2}$ | D. | $\sqrt{2}$ |
18.已知F1(-c,0),F2(c,0)为椭圆$\frac{{x}^{2}}{{a}^{2}}$$+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的两个焦点,若椭圆上存在点P满足$\overrightarrow{P{F}_{1}}$•$\overrightarrow{P{F}_{2}}$=2c2,则此椭圆离心率的取值范围是( )
A. | [$\frac{1}{2}$,$\frac{\sqrt{3}}{3}$] | B. | (0,$\frac{\sqrt{2}}{2}$] | C. | [$\frac{\sqrt{3}}{3}$,1) | D. | [$\frac{\sqrt{2}}{3}$,$\frac{\sqrt{3}}{3}$] |
16.已知定义域为R的函数f(x)满足:(1)当x∈(0,1]时,f(x)=x2;(2)f(x+1)=2f(x),则$\frac{f(x)}{{2}^{x}}$的最大值为( )
A. | $\frac{1}{2}$ | B. | $\frac{1}{3}$ | C. | 1 | D. | 2 |
13.设f(x)是一个三次函数,f′(x)为其导函数,如图是函数y=x•f′(x)的图象的一部分,则函数f(x)的极大值是( )
A. | f(-1) | B. | f(-2) | C. | f(1) | D. | f(2) |