题目内容

(12分) 若二次函数f(x)=ax2+bx+c(a≠0)的图象关于y轴对称,
且f(-2)>f(3),设m>-n>0.
(1) 试证明函数f(x)在(0,+∞)上是减函数;
(2) 试比较f(m)和f(n)的大小,并说明理由.
(1)见解析;(2)f(m)<f(n).
(1)∵f(x)=ax2+bx+c(a≠0)的图象关于y轴对称,
∴对任意x∈R,恒有f(-x)=f(x),即a(-x)2+b(-x)+c=ax2+bx+c恒成立,
据此可求出b="0." f(x)=ax2+c.再根据f(-2)>f(3),且f(-2)=f(2),
得f(2)>f(3),因而a<0.且f(x)在(0,+∞)上是减函数..
(2)∵m>-n>0,∴f(m)<f(-n).,再根据f(-n)=f(n),可得f(m)<f(n)..
∵f(x)=ax2+bx+c(a≠0)的图象关于y轴对称,
∴对任意x∈R,恒有f(-x)=f(x),
即a(-x)2+b(-x)+c=ax2+bx+c恒成立.
∴2bx=0对任意x∈R恒成立.
∴b=0.
∴f(x)=ax2+c.
∵f(-2)>f(3),且f(-2)=f(2),
∴f(2)>f(3).
∴a<0.且f(x)在(0,+∞)上是减函数.
又∵m>-n>0,
∴f(m)<f(-n).
而f(-n)=f(n),
∴f(m)<f(n).
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网