题目内容
【题目】已知椭圆:的离心率为,过左焦点的直线与椭圆交于,两点,且线段的中点为.
(Ⅰ)求椭圆的方程;
(Ⅱ)设为上一个动点,过点与椭圆只有一个公共点的直线为,过点与垂直的直线为,求证:与的交点在定直线上,并求出该定直线的方程.
【答案】(Ⅰ);(Ⅱ)证明见解析,,
【解析】
(Ⅰ)设,,根据点,都在椭圆上,代入椭圆方程两式相减,根据“设而不求”的思想,结合离心率以及中点坐标公式、直线的斜率建立等式即可求解.
(Ⅱ)设,由对称性,设,由,得椭圆上半部分的方程为,从而求出直线的方程,再由过点与垂直的直线为,求出,两方程联立,消去,即可求解.
(Ⅰ)由题可知,直线的斜率存在.
设,,由于点,都在椭圆上,
所以①,②,
①-②,化简得③
又因为离心率为,所以.
又因为直线过焦点,线段的中点为,
所以,,,
代入③式,得,解得.
再结合,解得,,
故所求椭圆的方程为.
(Ⅱ)证明:设,由对称性,设,由,得椭圆上半部分的方程为,,
又过点且与椭圆只有一个公共点,所以,
所以:,④
因为过点且与垂直,所以:,⑤
联立④⑤,消去,得,
又,所以,从而可得,
所以与的交点在定直线上.
练习册系列答案
相关题目