题目内容
12.已知f(x)=$\left\{\begin{array}{l}{\frac{-2x+1}{{x}^{2}}\\ x>0}\\{\frac{1}{x}\\ x<0}\end{array}\right.$,则f(x)>-1的解集为( )A. | (-∞,-1)∪(0,+∞) | B. | (-∞,-1)∪(0,1)∪(1,+∞) | C. | (-1,0)∪(1,+∞) | D. | (-1,0)∪(0,1) |
分析 原不等式可化为$\left\{\begin{array}{l}{\frac{-2x+1}{{x}^{2}}>-1}\\{x>0}\end{array}\right.$或$\left\{\begin{array}{l}{\frac{1}{x}>-1}\\{x<0}\end{array}\right.$,分别解不等式组取并集可得.
解答 解:原不等式可化为$\left\{\begin{array}{l}{\frac{-2x+1}{{x}^{2}}>-1}\\{x>0}\end{array}\right.$或$\left\{\begin{array}{l}{\frac{1}{x}>-1}\\{x<0}\end{array}\right.$,
解$\left\{\begin{array}{l}{\frac{-2x+1}{{x}^{2}}>-1}\\{x>0}\end{array}\right.$可得{x|x>0且x≠1};
解$\left\{\begin{array}{l}{\frac{1}{x}>-1}\\{x<0}\end{array}\right.$可得{x|x<-1}
取并集可得{x|x<-1或x>0且x≠1};
故选:B.
点评 本题考查分段函数不等式的解集,化为不等式组的解集是解决问题的关键,属中档题.
练习册系列答案
相关题目
2.在区间[1,3]上任取一个实数x,则1.5≤x≤2的概率等于( )
A. | $\frac{2}{3}$ | B. | $\frac{1}{2}$ | C. | $\frac{1}{3}$ | D. | $\frac{1}{4}$ |