题目内容

12.已知f(x)=$\left\{\begin{array}{l}{\frac{-2x+1}{{x}^{2}}\\ x>0}\\{\frac{1}{x}\\ x<0}\end{array}\right.$,则f(x)>-1的解集为(  )
A.(-∞,-1)∪(0,+∞)B.(-∞,-1)∪(0,1)∪(1,+∞)C.(-1,0)∪(1,+∞)D.(-1,0)∪(0,1)

分析 原不等式可化为$\left\{\begin{array}{l}{\frac{-2x+1}{{x}^{2}}>-1}\\{x>0}\end{array}\right.$或$\left\{\begin{array}{l}{\frac{1}{x}>-1}\\{x<0}\end{array}\right.$,分别解不等式组取并集可得.

解答 解:原不等式可化为$\left\{\begin{array}{l}{\frac{-2x+1}{{x}^{2}}>-1}\\{x>0}\end{array}\right.$或$\left\{\begin{array}{l}{\frac{1}{x}>-1}\\{x<0}\end{array}\right.$,
解$\left\{\begin{array}{l}{\frac{-2x+1}{{x}^{2}}>-1}\\{x>0}\end{array}\right.$可得{x|x>0且x≠1};
解$\left\{\begin{array}{l}{\frac{1}{x}>-1}\\{x<0}\end{array}\right.$可得{x|x<-1}
取并集可得{x|x<-1或x>0且x≠1};
故选:B.

点评 本题考查分段函数不等式的解集,化为不等式组的解集是解决问题的关键,属中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网