题目内容

【题目】已知F1F2分别为双曲线的左、右焦点,若双曲线左支上存在一点P,使得=8a,则双曲线的离心率的取值范围是__________________

【答案】

【解析】

由题意,根据双曲线的定义和题设条件,求得|PF1|=2a,|PF2|=4a,再由三角形的性质,得到求得,进而求得双曲线的离心率的取值范围。

P为双曲线左支上一点,∴|PF1|﹣|PF2|=﹣2a,∴|PF2|=|PF1|+2a ①,

=8a ②,

∴由①②可得|PF1|=2a,|PF2|=4a

∴|PF1|+|PF2|≥|F1F2|,即,∴ ③,

又|PF1|+|F1F2|>|PF2|,∴2a+2c>4a,∴>1 ④.

由③④可得1<≤3.

故双曲线的离心率的取值范围是(1,3].

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网