题目内容

(1)求函数y=
x2-2x+1
x-2
(x<2)的最大值
(2)函数y=loga(x+3)(a>0,a≠1)的图象恒过定点A,若点A在直线mx+ny+1=0上,其中mn>0,求
1
m
+
2
n
的最小值.
(1)∵x<2,
∴2-x>0,
∴y=
x2-2x+1
x-2
=
(x-2)2+2(x-2)+1
x-2
=-[(2-x)+
1
2-x
]+2≤-2
(2-x)×
1
2-x
+2=0,
当且仅当2-x=
1
2-x
,即x=1时取等号,
∴函数y=
x2-2x+1
x-2
(x<2)的最大值为0;
(2)∵函数y=loga(x+3)(a>0,a≠1)的图象恒过定点A,
∴A(-2,-1),
又∵点A在直线mx+ny+1=0上,
∴-2m-n+1=0,即2m+n=1,
又∵mn>0,
1
m
+
2
n
=
2m+n
m
+
4m+2n
n
=2+
n
m
+
4m
n
+2
≥4+2•
n
m
4m
n
=8

当且仅当m=
1
4
,n=
1
2
时取等号,
1
m
+
2
n
的最小值为8.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网