题目内容

对于定义在区间D上的函数f(X),若存在闭区间[a,b]?D和常数c,使得对任意x1∈[a,b],都有f(x1)=c,且对任意x2∈D,当x2∉[a,b]时,f(x2)<c恒成立,则称函数f(x)为区间D上的“平顶型”函数.给出下列说法:
①“平顶型”函数在定义域内有最大值;
②函数f(x)=x-|x-2|为R上的“平顶型”函数;
③函数f(x)=sinx-|sinx|为R上的“平顶型”函数;
④当t≤
3
4
时,函数,f(x)=
2,(x≤1)
log
1
2
(x-t),(x>1)
是区间[0,+∞)上的“平顶型”函数.
其中正确的是______.(填上你认为正确结论的序号)
对于①,根据题意,“平顶型”函数在定义域内某个子集区间内函数值为常数c,且这个常数是函数的最大值,故①正确.
对于②,函数f(x)=x-|x-2|=
2x-2,x<2
2,x≥2
,当且仅当x∈[2,+∞)时,函数的最大值为2,符合“平顶型”函数的定义,故②正确.
对于③,函数f(x)=sinx-|sinx|=
2sinx,x∈[2kπ-π,2kπ]
0,x∈[2kπ,2kπ+π]
,但是不存在区间[a,b],对任意x1∈[a,b],都有f(x1)=2,
所以f(x)不是“平顶型”函数,故③不正确.
对于④当t≤
3
4
时,函数,f(x)=
2,(x≤1)
log
1
2
(x-t),(x>1)
,当且仅当x∈(-∞,1]时,函数的最大值为2,符合“平顶型”函数的定义,故④正确.
故答案为 ①②④.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网