题目内容
(本小题满分12分)如图,在△ABC中,∠ABC=45°,∠BAC=90°,AD是BC上的高,沿AD把△ABD折起,使∠BDC=90°。
(1)证明:平面ADB⊥平面BDC;
(2 )设BD=1,求三棱锥D—ABC的表面积。
(1)证明:平面ADB⊥平面BDC;
(2 )设BD=1,求三棱锥D—ABC的表面积。
20.【解】(1)∵折起前AD是BC边上的高,
∴ 当Δ ABD折起后,AD⊥DC,AD⊥DB,………2分
又DBDC=D,…………3分
∴AD⊥平面BDC,又∵AD 面ABD
…………………………………5分
∴平面ABD⊥平面BDC.………6分
(2)由(1)知,DA,,,
DB=DA=DC=1,AB=BC=CA=,……7分
,
………10分
∴三棱锥D—ABC的表面积是………………12分
∴ 当Δ ABD折起后,AD⊥DC,AD⊥DB,………2分
又DBDC=D,…………3分
∴AD⊥平面BDC,又∵AD 面ABD
…………………………………5分
∴平面ABD⊥平面BDC.………6分
(2)由(1)知,DA,,,
DB=DA=DC=1,AB=BC=CA=,……7分
,
………10分
∴三棱锥D—ABC的表面积是………………12分
略
练习册系列答案
相关题目