题目内容
6.已知过点M(1,0)的直线l与椭圆$\frac{{x}^{2}}{4}+{y}^{2}=1$交于两点A、B,且$\overline{AM}=2\overline{MB}$,则直线l的斜率是±$\frac{\sqrt{15}}{6}$.分析 设直线l的方程为:my=x-1,A(x1,y1),B(x2,y2).与椭圆方程联立可得:(m2+4)y2+2my-3=0.由$\overline{AM}=2\overline{MB}$,可得y1=-2y2.联立$\left\{\begin{array}{l}{{y}_{1}+{y}_{2}=\frac{-2m}{{m}^{2}+4}}\\{{y}_{1}{y}_{2}=\frac{-3}{{m}^{2}+4}}\\{{y}_{1}=-2{y}_{2}}\end{array}\right.$,解出即可.
解答 解:设直线l的方程为:my=x-1,A(x1,y1),B(x2,y2).
联立$\left\{\begin{array}{l}{my=x-1}\\{{x}^{2}+4{y}^{2}=4}\end{array}\right.$,化为:(m2+4)y2+2my-3=0,
△>0,
∴y1+y2=-$\frac{2m}{{m}^{2}+4}$,y1y2=-$\frac{3}{{m}^{2}+4}$.
∵$\overline{AM}=2\overline{MB}$,
∴0-y1=2(y2-0),
即y1=-2y2.
联立$\left\{\begin{array}{l}{{y}_{1}+{y}_{2}=\frac{-2m}{{m}^{2}+4}}\\{{y}_{1}{y}_{2}=\frac{-3}{{m}^{2}+4}}\\{{y}_{1}=-2{y}_{2}}\end{array}\right.$,解得m2=$\frac{12}{5}$.
∴$m=±\sqrt{\frac{12}{5}}$,
∴直线l的向斜率k=$\frac{1}{m}$=±$\frac{\sqrt{15}}{6}$.
故答案为:±$\frac{\sqrt{15}}{6}$.
点评 本题考查了直线与椭圆相交问题、一元二次方程的根与系数的关系、向量的坐标运算、直线斜率,考查了推理能力与计算能力,属于难题.
A. | -1 | B. | $\frac{7\sqrt{2}}{2}$ | C. | 671 | D. | 2015 |
A. | -$\frac{7}{9}$ | B. | $\frac{7}{9}$ | C. | -$\frac{5}{9}$ | D. | $\frac{5}{9}$ |
A. | 7 | B. | 9 | C. | 11 | D. | 13 |