题目内容
3.求不等式组$\left\{\begin{array}{l}{{x}^{2}-x-2≥10}\\{{x}^{2}-3x-2≥8}\end{array}\right.$的解集.分析 分别求出每一个不等式的解集,然后求其交集即可.
解答 解:x2-x-2≥10,即(x+3)(x-4)≥0,解得x≤-3,或x≥4,
x2-3x-2≥8,即(x+2)(x-5)≥0,解得x≤-2,或x≥5,
∴$\left\{\begin{array}{l}{{x}^{2}-x-2≥10}\\{{x}^{2}-3x-2≥8}\end{array}\right.$的解集为(-∞,-3]∪[5,+∞).
点评 本题考查了一元二次不等式组的解法,属于基础题.
练习册系列答案
相关题目
11.2014年12月28日开始,北京市地铁按照里程分段计价.具体如下表:
已知在北京地铁四号线上,任意一站到陶然亭站的票价不超过5元,现从那些只乘坐四号线地铁,且在陶然亭站出站的乘客中随机选出120人,他们乘坐地铁的票价统计如图所示.
(Ⅰ)如果从那些只乘坐四号线地铁,且在陶然亭站出站的乘客中任选1人,试估计此人乘坐地铁的票价大于3元的概率为$\frac{1}{2}$;
(Ⅱ)从那些只乘坐四号线地铁,且在陶然亭站出站的乘客中随机选2人,记X为这2人乘坐地铁的票价和,根据统计图,并以频率作为概率,求X的分布列和数学期望.
乘坐地铁方案 (不含机场线) | 6公里(含)内3元; 6公里至12公里(含)内4元; 12公里至22公里(含)内5元; 22公里至32公里(含)内6元; 32公里以上部分,每增加l元可乘坐20公里(含). |
(Ⅰ)如果从那些只乘坐四号线地铁,且在陶然亭站出站的乘客中任选1人,试估计此人乘坐地铁的票价大于3元的概率为$\frac{1}{2}$;
(Ⅱ)从那些只乘坐四号线地铁,且在陶然亭站出站的乘客中随机选2人,记X为这2人乘坐地铁的票价和,根据统计图,并以频率作为概率,求X的分布列和数学期望.
15.若关于x的不等式(a2-a)•4x-2x-1<0在区间(-∞,1]上恒成立,则实数a的取值范围为( )
A. | (-2,$\frac{1}{4}$) | B. | (-∞,$\frac{1}{4}$) | C. | (-$\frac{1}{2}$,$\frac{3}{2}$) | D. | (-∞,6] |
5.设向量$\overrightarrow{a}$=(1,2),$\overrightarrow{a}$+$\overrightarrow{b}$=(0,3),则向量$\overrightarrow{c}$=(1,5)用$\overrightarrow{a}$,$\overrightarrow{b}$表示为( )
A. | $\overrightarrow{c}$=$\overrightarrow{a}$+$\overrightarrow{b}$ | B. | $\overrightarrow{c}$=$\overrightarrow{a}$+2$\overrightarrow{b}$ | C. | $\overrightarrow{c}$=2$\overrightarrow{a}$+$\overrightarrow{b}$ | D. | $\overrightarrow{c}$=$\overrightarrow{a}$-$\overrightarrow{b}$ |