题目内容
【题目】如图所示,P是四边形ABCD所在平面外的一点,四边形ABCD是∠DAB=60°且边长为a的菱形.侧面PAD为正三角形,其所在平面垂直于底面ABCD.
(1)若G为AD边的中点,求证:BG⊥平面PAD;
(2)求证:AD⊥PB.
【答案】(1)详见解析(2)详见解析
【解析】
试题分析:(1)连接BD,根据条件可知△ABD是正三角形,而G为AD边的中点,则BG⊥AD,BG平面ABCD又平面APD⊥平面ABCD,平面APD∩平面ABCD=AD,根据面面垂直的性质定理可知BG⊥平面APD;(2)连接PG,由侧面PAD为正三角形,G为AD边的中点得到AD⊥PG,再由(1)可知BG⊥AD,PG,BG平面PBG,PG∩BG=G,根据线面垂直的判定定理可知AD⊥平面PBG,而PB平面PBG,根据线面垂直的性质可知AD⊥PB
试题解析:(1)连结PG,由题知△PAD为正三角形,G是AD的中点,∴PG⊥AD.
又平面PAD⊥平面ABCD,∴PG⊥平面ABCD,∴PG⊥BG.
又∵四边形ABCD是菱形且∠DAB=60°,∴BG⊥AD.
又AD∩PG=G,∴BG⊥平面PAD.
(2)由(1)可知BG⊥AD,PG⊥AD.
所以AD⊥平面PBG,所以AD⊥PB.
【题目】为了准备里约奥运会的选拔,甲、乙两人进行队内射箭比赛,各射4支箭,两人4次所得环数如下:(最高为10环)
甲 | 6 | 6 | 9 | 9 |
乙 | 7 | 9 |
(Ⅰ)已知在乙的4支箭中随机选取1支时,此支射中环数小于6环的概率不为零,且在4支箭中,乙的平均环数高于甲的平均环数,求的值;
(Ⅱ)如果,,从甲、乙两人的4次比赛中随机各选取1次,并将其环数分别记为,,求的概率;
(Ⅲ)在4次比赛中,若甲、乙两人的平均环数相同,且乙的发挥更稳定,写出的所有可能取值.(结论不要求证明)