题目内容
函数在点P(2, 1)处的切线方程为__________________________.
x-y-1=0
欲判在点P(2,1)处的切线方程,只须求出其斜率即可,故先利用导数求出在x=2处的导函数值,再结合导数的几何意义即可求出切线的斜率.从而问题解决.
解:∵函数y=,
∴y′=x,
∴在点P(2,1)处的切线的斜率为:
k=1,
∴在点P(2,1)处的切线方程为:
y-1=1×(x-2)
即:x-y-1=0.
故答案为:x-y-1=0.
解:∵函数y=,
∴y′=x,
∴在点P(2,1)处的切线的斜率为:
k=1,
∴在点P(2,1)处的切线方程为:
y-1=1×(x-2)
即:x-y-1=0.
故答案为:x-y-1=0.
练习册系列答案
相关题目