题目内容
【题目】如图,在多面体中,△是等边三角形,△是等腰直角三角形,,平面⊥平面,⊥平面,点为的中点,连接.
(1)求证:平面;
(2)若,求三棱锥的体积.
【答案】(1)证明见解析;(2).
【解析】
试题分析:(1)因为为等腰直角三角形,且为中点,所以,又因为平面平面,且交线为,根据面面垂直的性质定理可得平面,又因为平面,根据垂直于同一平面的两条直线平行得,于是根据线面平行判定定理可证平面;(2)连接,由(1)知平面,点到平面的距离等于点到平面的距离,因此,由于地面是边长为的等边三角形,所以其面积为,则,根据已知⊥平面,所以三棱锥,所以.
试题解析:(1)证明:∵△是等腰直角三角形,,点为的中点,
∴⊥.
∵平面⊥平面,平面平面,平面,
∴⊥平面,
∵⊥平面,
∴,
∵平面,平面,
∴平面.
(2)由(1)知平面,
∵点到平面的距离等于点到平面的距离.
∵,△是等边三角形,
∴,,
连接,则⊥,,
,
∴三棱锥的体积为.
练习册系列答案
相关题目
【题目】某电视台在一次对收看文艺节目和新闻节目观众的抽样调查中,随机抽取了100名电视观众,相关的数据如下表所示:
文艺节目 | 新闻节目 | 总计 | |
20至40岁 | 40 | 18 | 58 |
大于40岁 | 15 | 27 | 42 |
总计 | 55 | 45 | 100 |
(1)用分层抽样方法在收看新闻节目的观众中随机抽取5名,大于40岁的观众应该抽取几名?
(2)在上述抽取的5名观众中任取2名,求恰有1名观众的年龄为20至40岁的概率.