题目内容
一个长、宽、高分别为a、b、c长方体的体积是8cm2,它的全面积是32 cm2, 且满足 b2=ac,求这个长方体所有棱长之和。
解析
(本题满分12分)如图,在四棱锥中,底面为平行四边形,,,为中点,平面, ,为中点.(1)证明://平面;(2)证明:平面;(3)求直线与平面所成角的正切值.
已知梯形ABCD中,AD∥BC,∠ABC ="∠BAD" =,AB=BC=2AD=4,E、F分别是AB、CD上的点,且EF∥BC.设AE =,G是BC的中点.沿EF将梯形ABCD翻折,使平面AEFD⊥平面EBCF (如图).(1)当=2时,求证:BD⊥EG ;(2)若以F、B、C、D为顶点的三棱锥的体积记为,求的最大值;(3)当取得最大值时,求二面角D-BF-E的余弦值.
(12分)如图,等边与直角梯形垂直,,,,.若分别为的中点.(1)求的值; (2)求面与面所成的二面角大小.
如图,直三棱柱中,,是棱的中点,(1) 证明:(2)求二面角的大小. (12分)
已知△BCD中,∠BCD=90°,AB⊥平面BCD,E、F分别是AC、AD上的动点,且求证:不论λ为何值,总有平面BEF⊥平面ABC
如图,已知三棱柱的侧棱与底面垂直,,,,分别是,的中点,点在直线上,且;(Ⅰ)证明:无论取何值,总有;(Ⅱ)当取何值时,直线与平面所成的角最大?并求该角取最大值时的正切值;(Ⅲ)是否存在点,使得平面与平面所成的二面角为30º,若存在,试确定点的位置,若不存在,请说明理由.
(本小题满分14分)如图所示,在四棱锥中,平面,,,,是的中点.(1)证明:平面;(2)若,,,求二面角的正切值.
(满分12分)如图,在正方体中,E、F、G分别为、、的中点,O为与的交点,(1)证明:面(2)求直线与平面所成角的正弦值.